
48 The Delphi Magazine Issue 50

Win32 Inter-Process
Communication
by Brian Long

Applications often need to
exchange data with each

other. They may well do it indi-
rectly, using a database system,
and this approach is commonly
used. However, applications may
also need to communicate directly
with one another. Since Win32 par-
titions applications into their own
separate address spaces, this is
rather more difficult than it was in
16-bit Windows.

This article looks at several
options for Inter-Process Commu-
nication (or IPC) in the Win32 envi-
ronment and implementing them
in Delphi applications.

There are other mechanisms we
won’t have space to look into, or
have been covered before in The
Delphi Magazine. For example, the
clipboard provides an easy way for
applications to communicate,
although programmatic use of the
clipboard can destroy any data the
user stores there. The Delphi Clip-
Board object supports text, pic-
tures and components and can
readily deal with other formats.

Dynamic Data Exchange, or DDE,
is showing its age now, but if an
application supports no better IPC
mechanism than DDE, it’s easy to
implement using the components
on the System page of the palette.

COM allows an application's
objects (and their data) to be
accessed by other applications,
through well-defined sets of func-
tions called interfaces (supported
in Delphi since version 3). In partic-
ular, to get an arbitrary block of
data from one application to
another, you can use a Variantbyte
array as shown by Steve Teixeira in
his COM Corner column in Issue 44.
Also, OLE (a COM technology)
allows an application to support
compound documents containing
linked or embedded data. When
selected, the appropriate applica-
tion automatically starts to allow

editing of the data (see the
TOleContainer component). COM
application development has been
discussed in many past articles, so
we won’t go into the subject here.

RPC (Remote Procedure Calls)
and Windows Sockets also provide
mechanisms for talking to applica-
tions on other machines (poten-
tially running a different OS).

Having (b)rushed through these
IPC options, let’s look in rather
more detail at some more.

Windows Messages
Back in Issue 45, David Baer dis-
cussed Windows messages primar-
ily from the perspective of being
used in a single application. That
article provides an excellent over-
view of Delphi’s message support,
including window procedures in
objects and message handlers: I
recommend you read it. However,
the Windows API message support
is quite large and messages are a
common IPC solution, so we will
have a look at additional areas not
covered in the earlier article.

You can send a message to any
window in an application running
in the Windows environment on
the same machine using a variety
of Win32 API calls. All you need to
know is the window handle of the
target window. The window handle
is a 32-bit value that uniquely iden-
tifies the window apart from all
other windows in the system. A
window’s handle can be found in
various ways, as we will see later.
The message itself can be accom-
panied by two 32-bit integer
parameters (WParam and LParam)
which can contain whatever infor-
mation you choose to give to the
target window. The most com-
monly used APIs for delivering a
message to a window are
PostMessage and SendMessage.

If the message is being sent to
another process (which will live in

its own separate address space),
you must ensure that you do not
set either of these parameters to
contain pointers, object or
interface references, or Pascal
long string references. Any
memory address valid for one
process will be invalid in any other
process running on a Win32
platform.

Ultimately, the window proce-
dure for the target window will get
the message sent to that window.
In the case of a Delphi control or
form, the window procedure is the
WndProc method, which may well
farm the message out to a dedi-
cated message handler if one
exists. The two 32-bit values that
come with the message may well
contain useful information and are
typically examined or used when
the message is handled (meaning
received and processed).

How the message arrives at the
window procedure depends upon
how it was sent. Each application
has a message queue where
messages (for any window in the
application) can be deposited.
Such messages are called queued
messages. When the application is
not busy executing code, a mes-
sage loop checks the message
queue to see if anything has
arrived. If it has, the message is dis-
patched off to the window proce-
dure of the target window. Since
the application is often busy draw-
ing itself, or servicing events,
queued messages are not handled
immediately.

Delphi programs that spend a
non-negligible amount of time
doing some processing, causing
the message loop to remain
unchecked and possibly brimming
with unhandled messages, are
advised to periodically call Appli-
cation.ProcessMessages to process
any pending messages. This gener-
ally makes the application not look
like it has hung, by allowing paint
and other messages to be
processed.

Queued messages are sent with
PostMessage and, since they have
no definite time frame for being
handled, are by definition
non-urgent. Messages with a
higher degree of urgency are sent

October 1999 The Delphi Magazine 49

with SendMessage (and related
APIs) and are called non-queued
messages. SendMessage causes the
message to be delivered directly to
the window procedure of the
target window. The SendMessage
call does not return until the target
window procedure has processed
the message and so gives synchro-
nous message processing. Any
value returned by the window
procedure is returned by the
SendMessage function.

SendMessage can be used to
broadcast a given message to all
top level windows. When Send-
Message is called with a window
handle value of HWnd_Broadcast, it
sends it to the window procedure
of all top-level windows in the
system. Any values returned by the
various window procedures will be
ignored. BroadcastSystemMessage
can be used to perform a similar
job, but there is a problem using it
under Windows 95. Delphi maps
BroadcastSystemMessage onto the
underlying API called Broadcast-
SystemMessageA, which exists in
both Windows 98 and NT. Unfortu-
nately, the API is actually called
BroadcastSystemMessage in Win-
dows 95. If an application calls this
routine on Windows 95, the incor-
rect API mapping causes the
application to fail whilst loading.

If you plan to broadcast arbi-
trary messages around the system,
you are advised to register a
custom message for this purpose.
Whenever a unique string is
passed to the RegisterWindow-
Message API, you get a unique
window message value back. If
another application uses the same
string, it gets the same value back.
So if two applications register the
same string, they both have the
same message number to use. One
application can broadcast this
message and the other application
can pick up the message and
process it as needed.

Normal message handling in
Delphi is implemented using mes-
sage handling methods, where the
message to be handled is specified
as a constant value. Because
custom messages (registered with
RegisterWindowMessage) have
unknown values until runtime, you

cannot use message handling
methods to pick these messages
up. Instead you must override the
WndProc method.

The FindWindow API can be used
to get the window handle of a given
window so long as you know the
window class name (which hap-
pens to be the form class in a
Delphi application) and/or window
caption. The WinSight32 tool that
comes with Delphi can be used at
development time to examine the
windows in running applications
and identify their window classes,
for those cases where you do not
know their names.

If you are developing both the
applications which are communi-
cating information, you can

manufacture other ways for one
application to find the window
handle of the relevant window in
the other application. For exam-
ple, if application A launches appli-
cation B, it can pass its own main
form handle as a command-line
parameter. Application B can then
send a message to application A,
passing its own window handle
(which equates to its main form’s
Handle property) as a parameter to
the message.

Alternatively, application B can
define a Windows atom. This is a
string registered in the Windows
atom table with appropriate API
calls. When you register an atom

unit CustomMsgU;
interface
uses Windows;
type
TBroadcastSystemMsgFunc = function (Flags: DWORD; Recipients: PDWORD;
uiMessage: UINT; wParam: WPARAM; lParam: LPARAM): Longint; stdcall;

var
wm_ClinicMessage: UInt;
BroadcastSystemMsg: TBroadcastSystemMsgFunc;

implementation
uses SysUtils;
procedure InitBroadcastMsgPtr;
const
APIName: array[Boolean] of PChar =
('BroadcastSystemMessageA', 'BroadcastSystemMessage');

var InWin95: Boolean;
begin
//Running under Windows 95?
InWin95 := (Win32Platform = VER_PLATFORM_WIN32_WINDOWS) and

(Win32MajorVersion = 4) and (Win32MinorVersion = 0);
@BroadcastSystemMsg :=
GetProcAddress(GetModuleHandle(Windows.User32), APIName[InWin95])

end;
initialization
wm_ClinicMessage := RegisterWindowMessage('MyUniqueString!!!');
InitBroadcastMsgPtr

end.

➤ Above: Listing 1 ➤ Below: Listing 2

TMsgReceiveForm = class(TForm)
protected
procedure WndProc(var Message: TMessage); override;

end;
...
procedure TMsgReceiveForm.WndProc(var Message: TMessage);
begin
if Message.Msg = wm_ClinicMessage then
ShowMessageFmt('Received a message (WParam = %d, LParam = %d)',
[Message.WParam, Message.LParam])

else
inherited

end;

➤ Listing 3

procedure TMsgSendForm.btnBroadcastClick(Sender: TObject);
begin
WinExec('MsgRcv1.Exe', sw_ShowNormal);
SendMessage(HWnd_Broadcast, wm_ClinicMessage, updWParam.Position,
updLParam.Position)

end;
procedure TMsgSendForm.btnBroadcast2Click(Sender: TObject);
var Recipients: DWord;
begin
WinExec('MsgRcv1.Exe', sw_ShowNormal);
Recipients := BSM_APPLICATIONS;
//Can make message be sent to all applications except this one
BroadcastSystemMsg(BSF_IGNORECURRENTTASK, @Recipients,
wm_ClinicMessage, updWParam.Position, updLParam.Position)

end;

50 The Delphi Magazine Issue 50

you get a unique identifying
number back that could be sent.
Application B could store the text
version of its window handle as an
atom, so application A can easily
find its window handle value. For
more information, look up Atoms in
the Win32 help file optionally
installed with any 32-bit Delphi.

If you look in the Messages sub-
directory of the directory where
this article’s files are located on
this month’s CD-ROM you will find
two projects that demonstrate
simple inter-process communica-
tion via messages. One application
(MsgSend.Dpr) broadcasts a
custom message both with
SendMessage and BroadcastSystem-
Message. The other application
(MsgRcv.Dpr) picks up the mes-
sage and displays the values of
WParam and LParam that were
passed. A helper unit, CustomMsgU,
registers the custom Windows
message and also deals with the
problem of BroadcastSystemMessage
not working on Windows 95.

The initialisation section of the
unit checks which platform the
program is running on, and then
locates the address of the relevant
routine (whose name depends on
the platform). A global function
pointer called BroadcastSystem-
Msg is then set to point at the
address of the routine. Listing 1
shows this unit, whilst Listing 2
shows the two code snippets that
broadcast the message around the
system. Finally, Listing 3 shows the
target application’s overridden
WndProc method.

The wm_CopyData Message
Windows messages can be useful,
but they generally only allow 8
bytes of data to be sent. To commu-
nicate more data, you can use the
dedicated wm_CopyData message.
This allows you to set up a block of

data (which must be pure data,
with no addresses or pointers con-
tained within) and send it to a
target window. It must be sent, as
opposed to posted, to the target,
since the data block is only valid in
the target process until the call to
SendMessage returns. If the message
was posted with PostMessage, the
data block would be invalid by the
time the message was extracted
from the queue and passed to the
window procedure.

When you send the wm_CopyData
message, the WParam value must be
set to the window handle of the
window sending the message (to
give an easy way for the target
window to reply) and the LParam
value must be set to the address of
a TCopyDataStruct record. This
record contains the address and
size of your data block and also one
other DWord field that can be used
for any additional information you
wish to pass.

In the Messages subdirectory off
the main CD-ROM directory for this
article, you will find a pair of pro-
jects that give an example of
wm_CopyData in action. The two
applications both have memo com-

ponents on the form.
As the user types into
the memo on the
second application
(Child.Dpr), which is

launched by the first application
(Parent.Dpr), each key press
causes the memo contents to be
read, packaged up and sent off as a
wm_CopyData message. The parent
picks up the message, containing
only character data, reads the con-
tents and writes it into its own
memo. Thus we can see the data
being sent from one program to
another.

Before sending a wm_CopyData
message, the child has to find the
parent’s window handle. The
approach taken is for the parent to
send its window handle as a
command-line parameter to the
child.

Listing 4 contains the important
snippets from the two projects, the
memo’s OnChange event handler in
the child project and the parent’s
wm_CopyData message handling
method. Figure 1 shows the two
programs working at runtime.

Mailslots
A mailslot is not a particularly well
known IPC mechanism among
Delphi programmers. Whilst many
programmers have heard of, say,
named pipes (covered later),
mailslots don’t usually sound
familiar.

The job of a mailslot is to make it
easy to send messages between
applications and also to broadcast
messages throughout a network
domain. A mailslot provides one-
way communication and it is

procedure TChildForm.Memo1Change(Sender: TObject);
var
CopyData: TCopyDataStruct;
TextMsg: String;

begin
TextMsg := Memo1.Text;
//Make the data pointer point at the first character of the string
CopyData.lpData := @TextMsg[1];
//Set the length field to indicate the number of characters in the memo
CopyData.cbData := Length(TextMsg);
//Send the message to the parent's window handle, as sent on the command-line
SendMessage(StrToInt(ParamStr(1)), wm_CopyData, Handle, Integer(@CopyData))

end;
TParentForm = class(TForm)
...
public
procedure WMCopyData(var Msg: TWMCopyData);
message wm_CopyData;

end;
...
procedure TParentForm.WMCopyData(var Msg: TWMCopyData);
var TextMsg: String;
begin
//Set the string variable length and content to match what was sent
SetString(TextMsg, PChar(Msg.CopyDataStruct^.lpData),

Msg.CopyDataStruct^.cbData);
//Put string into memo
Memo1.Text := TextMsg

end;

➤ Listing 4

➤ Figure 1: One
app sending
textual data
to another.

52 The Delphi Magazine Issue 50

implemented as a memory-based
file. Normal Windows file routines
are used to access it. One applica-
tion, the mailslot server, creates
and owns the mailslot and can
retrieve messages stored in the
mailslot by other applications,
mailslot clients. When the mailslot
server creates the mailslot, it gets a
mailslot handle, which is used for
reading messages. When every
server handle to the mailslot is
closed, the mailslot and all data
contained in it are deleted.

Any application that has the
name of a mailslot can be a mailslot
client and write messages to the
mailslot. The mailslot name could
be passed as a command-line
parameter. Newer messages are
placed in the mailslot after older
messages. Since the mailslot is a
pseudofile, messages stored in it
may consist of data in any format.

A mailslot can be accessed
across a network. Also, mailslots
can broadcast messages within a
domain. If several mailslot servers
in a domain create mailslots with
the same name, any message for
the mailslot which is sent to the
domain will be delivered to each
mailslot server’s mailslot. While
there is no limit on the number of
messages that can be sent to a
mailslot, messages that are to be
broadcast to a domain must be no
bigger than 400 bytes. Messages
that are not broadcast should be
no bigger than 64Kb.

To create a mailslot, the mailslot
server process calls CreateMail-
slot. This API takes a case-
insensitive mailslot name which
must be of the form:

\\.\mailslot\[path]name

The name part must be unique on
the current machine, and the
optional path represents pseudo-
directories you can specify to
further identify the mailslot, or
allow several mailslots to appear
related. For example, the following
mailslot names all include optional
path specifiers:

\\.\mailslot\sales\1997
\\.\mailslot\sales\1998
\\.\mailslot\sales\1999

The CreateMailslot routine also
takes three other parameters. One
indicates the maximum message
size allowed (0 means the default
maximum as specified before). The
next parameter specifies the
amount of time (in milliseconds)
that a read operation will wait for a
message to be written to the
mailslot before a timeout occurs.
The constant MAILSLOT_WAIT_FOR-
EVER indicates that there is no time-
out, but Delphi 2 does not define
this symbol (it has a value of -1).
This timeout can be changed with a
call to SetMailslotInfo. The last
parameter is a security specifier
that indicates (on NT) whether
child process will also be able to
use the mailslot handle that
CreateMailslot will return.

GetMailslotInfo returns several
bits of information about the
mailslot, including the maximum
message size, the read timeout, the
number of messages waiting to be
read and the size of the next mes-
sage. If there are no messages wait-
ing, the next message size
parameter will be MAILSLOT_NO_MES-
SAGE which, again, Delphi 2 does
not define (it should be -1).

To get a message from a mailslot,
the mailslot server calls the Win-
dows API ReadFile (or the Delphi
version of it, which is FileRead
from the SysUtils unit).

The mailslot client accesses the
mailslot by passing the name of an
existing mailslot to the Windows
CreateFile function (or Delphi’s
FileOpen). To write to a mailslot on
the same machine, the mailslot
name is passed exactly as it was by
the mailslot server. To write to a
mailslot on a specific machine, the
mailslot needs to be in this form:

\\computername\mailslot\
[path]name

To broadcast messages to all
mailslots with a given name in a
specified domain, the mailslot
name must be in this form:

\\domainname\mailslot\
[path]name

To broadcast messages to all
mailslots with a given name in the

system’s primary domain, this
form should be used:

*\mailslot\[path]name

Messages are written to the
mailslot with WriteFile (or
FileWrite) and the client side of
the mailslot is closed with Close-
Handle (or Delphi’s FileClose).

Since you have the choice of
using raw API calls or Delphi wrap-
pers for them, two sample project
groups are supplied to demon-
strate simple mailslot usage, one
for each set of calls. The Mailslots
subdirectory has both API and
Delphi subdirectories, which have
identical projects, each using a dif-
ferent set of calls. In each case, the
mailslot server has code to launch
the mailslot client (the examples
work with local mailslots).

The two applications operate
(to the user) in exactly the same
way as with the wm_CopyData sam-
ples described above. As the user
types into the mailslot client
memo, each key press causes the
memo contents to be written to the
mailslot as a new message. The
mailslot server uses a timer to reg-
ularly check for new messages.
When one arrives, it reads the mes-
sage into a string and then writes it
into its own memo. Listing 5 con-
tains the pertinent code from the
mailslot server project (called
ServerMailslot.Dpr) and Listing 6
shows the corresponding code
from the mailslot client (called
ClientMailslot.Dpr).

The prime advantage of a
mailslot is that it can broadcast a
message to many PCs in a domain.
The primary disadvantage is that
the mailslot client has no guaran-
tee that the message sent through
the mailslot is received by the
mailslot server, and is not alerted
to a failed message send.

Pipes
A pipe is an IPC mechanism with
two ends, each of which is defined
by a handle. The pipe can be cre-
ated for one-way communication
only, or for duplex (two-way) com-
munication. If a program has a
handle to one end of a pipe, it can
communicate with the process

54 The Delphi Magazine Issue 50

that has a handle to the other end
of the pipe. The Win32 API sup-
ports two kinds of pipe: anony-
mous and named. Unlike mailslots,
you know if the data gets to the
other end of a pipe, as the API fails
if the pipe is broken in some way.

Anonymous Pipes
An anonymous pipe is an unnamed,
one-way pipe that supports com-
munication (again with file writing
functions) between a parent pro-
cess and a child process (a process
launched by the parent), or
between two child processes of a
parent process. Because of this,
anonymous pipes operate on a
single machine and do not support
networked communications. After
creation, the pipe will exist until
the handles to both ends of the
pipe are closed.

The CreatePipe API creates an
anonymous pipe and supplies the
program with a read-only handle to
the read end of the pipe and a
write-only handle to the write end

const
MailslotNameFixedReadPrefix = '\\.\mailslot\';
MailslotName = 'SampleMailslot';
MailslotReadName = MailslotNameFixedReadPrefix +
MailslotName;

MailslotMaxSize = 0; //any size
MailslotTimeout = 0; //don't wait

var Mailslot: THandle;
procedure TForm1.FormCreate(Sender: TObject);
begin
Mailslot := CreateMailslot(MailslotReadName,
MailslotMaxSize, MailslotTimeout, nil);

if Mailslot = Invalid_Handle_Value then
raise EWin32Error.Create('Unable to create mailslot');

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
FileClose(Mailslot);

end;
procedure TForm1.Timer1Timer(Sender: TObject);
var

NextMsgSize: DWord;
Msg: String;

begin
if not GetMailslotInfo(Mailslot, nil, NextMsgSize, nil,
nil) then begin
Timer1.Enabled := False;
raise EWin32Error.Create(
'Cannot get mailslot information')

end;
//Check there is a message to read
if NextMsgSize <> Mailslot_No_Message then begin
//Allocate string size as required and set length
SetLength(Msg, NextMsgSize);
//Read the data into the string variable
if FileRead(Mailslot, Msg[1], NextMsgSize) =
Integer(HFile_Error) then begin
Timer1.Enabled := False;
raise EWin32Error.Create('Cannot read from mailslot');

end;
Memo1.Text := Msg

end
end;

const
MailslotNameLocalWritePrefix = '\\.\mailslot\';
MailslotName = 'SampleMailslot';
MailslotWriteName = MailslotNameLocalWritePrefix + MailslotName;

var
Mailslot: THandle;

procedure TForm1.FormCreate(Sender: TObject);
begin
Mailslot := FileOpen(MailslotWriteName, fmOpenWrite or fmShareDenyWrite);
if DWord(Mailslot) = Invalid_Handle_Value then
raise EWin32Error.Create('Cannot open client side of mailslot');

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
FileClose(Mailslot);

end;
procedure TForm1.Memo1Change(Sender: TObject);
var Msg: String;
begin
Msg := Memo1.Text;
if FileWrite(Mailslot, Msg[1], Length(Msg)) = Integer(HFile_Error) then
raise EWin32Error.Create('Cannot write to mailslot');

end;

➤ Listing 5

➤ Listing 6
of the pipe. To get parent/child
process communication, one of the
handles must be given to the child
process. For the child process to
be able to use the handle, the
handle must be inheritable. This
can be ensured by following these
steps.

Firstly, the pPipeAttributes
parameter to CreatePipe can have
the bInheritHandle field set to True.
However, even if this is not done, a
call to DuplicateHandle can toggle
the inheritability of a given handle.
Next, the child process is launched
with CreateProcess, where the
bInheritHandlesparameter is set to
True, which means the child pro-
cess will be able to successfully
use the same handle value as the
parent process, for any of the
parent’s inheritable handles.

To actually give the handle to the
child, apart from simply passing it
as a command-line parameter, a
common approach is to use one of
the standard handles (standard
input, standard output and stan-
dard error). Since the child pro-
cess will inherit the parent’s

standard handles, the parent can
call SetStdHandle to set one of them
to be the pipe handle. The child
can then use GetStdHandle to pick
the handle up.

Again, there are a pair of project
groups supplied in subdirectories
off the AnonymousPipes subdirec-
tory, containing both a raw API
approach and one using Delphi
RTL calls. The parent process in
each case (the project called
ParentAnonymousPipe.Dpr) cre-
ates an anonymous pipe. The
intention is for the child process
(ChildAnonymousPipe.Dpr) to
write to it and the parent to read
from it, so the pipe handles are cre-
ated as inheritable. To get the pipe
write handle to the child, the stan-
dard output handle is replaced by
it before launching the child. To
keep things tidy, the parent then
ensures that the only write handle
belongs to the child process, by
closing its own handle after
launching the child. Also, its read
handle is made non-inheritable
(with a call to DuplicateHandle) to
ensure the only pipe read handle
belongs to the parent.

Having got things set up, the
parent application then spawns a
thread to keep checking the pipe
for messages. If the thread ever
reads anything from the pipe
(which in this case is assumed to
be text), it uses a call to Synchro-
nize to get the text added to a
memo on the form. Listing 7 shows
the important bits of code.

The child process upon starting
up gets the pipe write handle with
a call to GetStdHandle and then

October 1999 The Delphi Magazine 55

allows the user to add things to the
pipe with an edit control and a
button. When the button is
pushed, the edit control contents
are written to the pipe. Listing 8
shows the details in brief.

It is also common in Windows
apps for anonymous pipe handles
to be left as the standard handles.
A parent process can set its stan-
dard input to the pipe read handle
and the child process can have its
standard output handle set as the
pipe write handle. However, com-
munication through standard han-
dles isn’t usal in Delphi programs,
except console mode applications.

Named Pipes
After all that messing around with
handles, it is nice to find that
named pipes are simpler to deal
with (although they do have a lot
more creation options). A named
pipe can be one-way or two-way
and is used to communicate
between a named-pipe server

process (which creates the named
pipe) and one or more named-pipe
client processes.

The call to CreateNamedPipe used
by the server process to create the
pipe can request more than one
instance of the pipe. Each instance
has the same name, but its own
storage space and handles, and
multiple pipe instances allow mul-
tiple clients to simultaneously con-
nect to the pipe. An instance of a
named pipe will be destroyed
when the last handle to that
instance is closed.

A client process only needs to
know the name of the pipe to use it,
and so unrelated processes can

communicate with it. Also, named
pipes allow communication across
a network. The primary restriction
with named pipes is that the server
process must be running on Win-
dows NT (Windows 95/98 do not
support CreateNamedPipe).

When creating a named pipe, the
server process must use a name in
the following format:

\\.\pipe\pipename

The client process specifies the
name of the pipe to connect to in
this format:

procedure TForm1.FormCreate(Sender: TObject);
begin
PipeWrite := GetStdHandle(Std_Output_Handle)

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
FileClose(PipeWrite);

end;
procedure TForm1.Button1Click(Sender: TObject);
var Msg: String;
begin
Msg := Edit1.Text + #13#10;
if FileWrite(PipeWrite, Msg[1], Length(Msg)) = Integer(HFile_Error) then
raise EWin32Error.Create('Cannot write to anonymous pipe');

end;

function LaunchChildApp: THandle;
const
ChildApp = 'ChildAnonymousPipe.Exe';

var
SI: TStartupInfo;
PI: TProcessInformation;

begin
GetStartupInfo(SI);
if not CreateProcess(nil, ChildApp, nil, nil,
//Make sure child inherits our inheritable handles
//as it will need to refer to them to use the pipes
True, 0, nil, nil, SI, PI) then
raise EWin32Error.Create('Unable to launch '+ChildApp);

Result := PI.HProcess
end;
procedure TForm1.FormCreate(Sender: TObject);
var
Security: TSecurityAttributes;
ThisProcess, PipeReadTmp, PipeWrite: THandle;

const
PipeBufferSize = 0; //default size

begin
with Security do begin
nLength := SizeOf(Security);
bInheritHandle := True; //create inheritable handles
lpSecurityDescriptor := nil;

end;
Win32Check(CreatePipe(PipeRead, PipeWrite, @Security,
PipeBufferSize));

//Turn STDOUT into the write pipe handle
Win32Check(SetStdHandle(Std_Output_Handle, PipeWrite));
//Ensure pipe read handle is not inheritable
ThisProcess := GetCurrentProcess();
Win32Check(DuplicateHandle(ThisProcess, PipeRead,
ThisProcess, @PipeReadTmp, 0, False,
Duplicate_Same_Access));

FileClose(PipeRead);
PipeRead := PipeReadTmp;
//This launches the child process and waits for it to
//settle down before moving on to the next statement
WaitForInputIdle(LaunchChildApp, Infinite);
//Ensure only the child has an open write pipe handle
FileClose(PipeWrite);
//Start reader thread off
with TTestAnonymousPipe.Create(PipeRead) do
FreeOnTerminate := True

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
FileClose(PipeRead);

end;
{ Thread object }
TTestAnonymousPipe = class(TThread)
private
FUIString: String;
FPipeHandle: Integer;
//Two routines to simplify showing our progress
procedure UpdateUI;
procedure WriteString(const S: String);

protected
//Body of the thread
procedure Execute; override;

public
constructor Create(PipeRead: Integer);

end;
constructor TTestAnonymousPipe.Create(PipeRead: Integer);
begin
inherited Create(False);
FPipeHandle := PipeRead;

end;
procedure TTestAnonymousPipe.UpdateUI;
begin
with Form1.Memo1 do
Text := Text + FUIString;

end;
procedure TTestAnonymousPipe.WriteString(const S: String);
begin
FUIString := S;
Synchronize(UpdateUI);

end;
procedure TTestAnonymousPipe.Execute;
const
BytesToRead = 1000;

var
BytesRead: Integer;
DataBuf: array[0..BytesToRead] of Char;

begin
repeat
BytesRead :=
FileRead(FPipeHandle, DataBuf, BytesToRead);

if BytesRead <> -1 then begin
SetString(FUIString, DataBuf, BytesRead);
Synchronize(UpdateUI);

end
until Terminated or (BytesRead = -1);
if not Terminated then
WriteString('Pipe is broken: ' +
SysErrorMessage(GetLastError))

end;

➤ Listing 7

➤ Listing 8

56 The Delphi Magazine Issue 50

\\servername\pipe\pipename

If the pipe is local, servername can
be replaced with a period, as in the
server’s pipe name format. The
pipename part of the name is
case-insensitive and can have as
many as 256 characters.

CreateNamedPipe specifies many
aspects of the pipe’s communica-
tion support by its various parame-
ters. The dwOpenMode parameter
specifies the access mode (com-
munication direction). An access
mode of PIPE_ACCESS_INBOUND
means the pipe server can only
read and the pipe client can only
write to the pipe. PIPE_ACCESS_OUT-
BOUND is the reverse where the
server can only write and the client
can only read. PIPE_ACCESS_DUPLEX
means both the server and client
can read and write to the pipe.
Other flags allow you to customise
how quickly write operations
return when the amount of data
being written is large, and when
the pipe client and server are on
different machines.

Another parameter specifies the
pipe’s type mode, either byte-type
(PIPE_TYPE_BYTE for arbitrary data)
or message-type (PIPE_TYPE_MES-
SAGE, where each write is consid-
ered a message unit). You also
specify the requested input and
output buffer sizes, although these
are advisory only. The help for this
API in the Win32 SDK discusses the
full set of flags.

The same set-up of an API ver-
sion and a Delphi version of a pair
of projects can be found in the
Named Pipes subdirectory. The
projects attempt to do the same
job as the anonymous pipe ver-
sions, in order to highlight the
alternative API calls needed for the
job. Listings 9 and 10 show the
code that differs for named pipes.

File Mappings
And Shared Memory
A file mapping, or memory-mapped
file, allows one or more processes
to associate a portion of their vir-
tual address space (called a file
view) with a section of a file on
disk. The association is made by an
operating system file-mapping
object. This allows potentially

many processes to access the
same file in an efficient way, how-
ever there is a requirement to syn-
chronise the access by each
process. Stefan Boether briefly
talked about the advantages of file
mappings in the Tips & Tricks
column back in Issue 16.

So a file mapping could allow
communication of data from one
application to another, via the disk
file that they both have a file view
on. However, the file in question
that gets mapped into memory can
be the operating system paging
file, if you wish. The net effect of
this is to provide a shared memory
mechanism between multiple pro-
cesses, into which you can place
whatever data you like.

A shared memory file mapping is
created with CreateFileMapping,
which takes a file handle that indi-
cates the file to map. A file handle
value of $FFFFFFFF indicates the
Windows paging file, which gives
you named shared memory
between processes on the same
machine.

One of the demonstration pro-
jects supplied with Delphi since
version 2 is designed to show IPC
techniques and has a TSharedMem
class (in the IPCThrd unit) that sim-
plifies the business of calling
CreateFileMapping, MapViewOfFile
and any other calls that are
required. As long as you set the

entry for Search Path in the Direc-
tories/Conditionals page of the
project options dialog to include
Delphi’s Demos\IPCDemos direc-
tory, you can add IPCThrd to your
unit’s uses clause.

The projects on the disk (in the
File Mappings subdirectory) are
again supplied twice. One project
group uses TSharedMem (don’t
forget to set the unit search path
for the IPCThrd unit), whilst the
other uses API calls to deal with
the file mapping. Clearly, the
non-API versions are simpler, so
we will focus on them. Again, the
projects are designed to emulate
the mailslot and pipe projects from
earlier. To see how they work
when implemented with shared
memory file mappings, Listing 11
has some code from the parent
process that displays what was
written to the file mapping. Listing
12 shows the details of the child
process that writes information to
the file mapping.

It’s worth noting at this point
that many of the other IPC mecha-
nisms available under Win32 are
actually implemented by mem-
ory-mapped files.

It should also be made clear that
when several processes are using
a memory-mapped file, some form
of synchronisation should be
employed to ensure coherent
views of the data. In other words,

const
PipeNameFixedPrefix = '\\.\pipe\';
PipeName = PipeNameFixedPrefix + 'SampleNamedPipe';
PipeMaxInstances = 1; //only allow 1 pipe
PipeOutBufferSize = 0; //any size
PipeInBufferSize = 0; //any size
PipeTimeout = 0; //don't wait

procedure TForm1.FormCreate(Sender: TObject);
const PipeBufferSize = 0; //default size
begin
PipeRead := CreateNamedPipe(PipeName, Pipe_Access_Inbound, Pipe_Type_Byte,
PipeMaxInstances, PipeOutBufferSize, PipeInBufferSize, PipeTimeOut, nil);

if PipeRead = Invalid_Handle_Value then
raise EWin32Error.Create('Cannot create named pipe');

//This launches the child process and waits for it to
//settle down before moving on to the next statement
WaitForInputIdle(LaunchChildApp, Infinite);
//Start reader thread off
with TTestNamedPipe.Create(PipeRead) do
FreeOnTerminate := True

end;

const
PipeNameFixedPrefix = '\\.\pipe\';
PipeName = PipeNameFixedPrefix + 'SampleNamedPipe';

procedure TForm1.FormCreate(Sender: TObject);
begin
PipeWrite := FileOpen(PipeName, fmOpenWrite);
if PipeWrite = Invalid_Handle_Value then
raise EWin32Error.Create('Cannot open pipe for writing');

end;

➤ Above: Listing 9 ➤ Below: Listing 10

58 The Delphi Magazine Issue 50

one process should gain exclusive
access to the file when writing, and
then the other process should also
gain exclusive access to the file for
reading. A suitable synchronisa-
tion mechanism would be a mutex,
specifically designed for enforcing
mutually exclusive access. You can
find an easy-to-use TMutex class in
the IPCThrd unit.

To show briefly how the mutex
would be incorporated into the
code, Listing 13 is a modified ver-
sion of Listing 12. Listing 11 should
also be modified in a similar way to
ensure only one process is access-
ing the file mapping at a time. If one
program tries to get the mutex and
another process already has it, the

calling thread is blocked until the
mutex is released.

The only problem to watch out
for is the TMutex.Get parameter,
used to specify how long to wait for
the mutex. It is defined as an Inte-
ger (a signed type), and the value is
then passed to the Win32 API Wait-
ForSingleObject which takes a
DWord (unsigned type). One value
Windows does let you pass is the
constant Infinite, defined as a
DWord with a value of $FFFFFFFF),
but you need to take care. Firstly,
you need to typecast this to an
Integer to make the Get method
accept it, which turns the value
into -1. This integer is then passed
to WaitForSingleObject, but if
range-checking is enabled, you will
get an error, due to -1 being lower

than the lowest DWord (0). You
should either re-code the Get
method to take a DWord parameter,
or turn range-checking off in the
IPCThrd unit.

Check out John Chaytor’s article
on sharing data back in Issue 17
(January 1997) for information on
various synchronisation objects
available from Win32.

Summary
There are many Win32 inter-
process communication mecha-
nisms available to take advantage
of with different capabilities,
which will dictate the one you will
use. Some support network com-
munications and some don’t. Some
support communication between
unrelated processes and some
don’t. Some rely on a particular
version of Windows.

If you need two applications to
communicate with each other,
hopefully you will have picked up
some useful ideas from this article.

Brian Long is an independent
consultant and trainer. You can
reach him at brian@blong.com

Copyright © 1999 Brian Long.
All rights reserved.

MemMapFile: TSharedMem;
...
const
MemMapFileName = 'SampleMemoryMappedFile';
MemMapSize = 1000;

procedure TForm1.FormCreate(Sender: TObject);
begin
MemMapFile := TSharedMem.Create(MemMapFileName, MemMapSize);
LaunchChildApp;

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
MemMapFile.Free

end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
//If there is a PChar, then extract it
if PChar(MemMapFile.Buffer)[0] <> #0 then
Memo1.Text := StrPas(PChar(MemMapFile.Buffer))

end;

MemMapFile: TSharedMem;
...
procedure TForm1.FormCreate(Sender: TObject);
begin
MemMapFile := TSharedMem.Create(MemMapFileName, MemMapSize);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
MemMapFile.Free

end;
procedure TForm1.Memo1Change(Sender: TObject);
var Msg: String;
begin
Msg := Memo1.Text;
//Copy memo contents (as PChar, with trailing 0 character) into shared memory
Move(PChar(Msg)^, MemMapFile.Buffer^, Length(Msg) + 1)

end;

➤ Above: Listing 11 ➤ Below: Listing 12

Mutex: TMutex;
...
procedure TForm1.FormCreate(Sender: TObject);
begin
Mutex := TMutex.Create('FileMappingMutex');
MemMapFile := TSharedMem.Create(MemMapFileName, MemMapSize);

end;
procedure TForm1.Memo1Change(Sender: TObject);
var Msg: String;
begin
Mutex.Get(Integer(Infinite));
Msg := Memo1.Text;
Move(PChar(Msg)^, MemMapFile.Buffer^, Length(Msg) + 1);
Mutex.Release;

end;

➤ Listing 13

	Windows Messages
	The wm_CopyData Message
	Mailslots
	Pipes
	Anonymous Pipes
	Named Pipes
	File Mappings And Shared Memory
	Summary

